An Unusual Base-catalysed Rearrangement of an α-Ethoxycarbonylethyl (or α-Cyanoethyl) Cyclic β-Keto Ester

Zhuo-Feng Xie, Izumi Nakamura, Hiroshi Suemune, and Kiyoshi Sakai* Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka 812, Japan

Treatment of the title compounds (3), (7), and (8) with potassium t-butoxide afforded the unusual rearrangement products (5), (9), and (10).

It is generally accepted that, under basic conditions, a compound with an active methylene at the γ-position to the carbonyl function, e.g. (3), may undergo a zip reaction to afford two ring-expanded products wia the four-membered intermediate (A) (see Scheme 1), instead of retro-Michael cleavage. ${ }^{1}$ In continuation of studies on ring-expansion reactions, ${ }^{2}$ we have found a novel, unexpected rearrangement.
Ethoxycarbonylation of bicyclo[3.3.0]octan-2-one (1) ${ }^{3}$ with ethyl cyanoformate afforded (2) (70\%) which upon Michael addition with ethyl acrylate gave a single product (3). Treatment of the latter with $\mathrm{Bu}^{\mathrm{t}} \mathrm{OK}$ in $\mathrm{Me}_{2} \mathrm{SO}$ at $25^{\circ} \mathrm{C}$ gave three components two of which were identified as the retro-Michael cleavage product (2) (20%) and unchanged (3) (12%). The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of the third component (22%), obtained as an inseparable stereoisomeric mixture, showed remarkable differences from that of (3). A newly formed quaternary carbon was observed at 58.92 p.p.m. [(3) 61.80 p.p.m.] in its ${ }^{13} \mathrm{C}$ offresonance n.m.r. spectrum, which suggests that this is not the expected compound (4), but the rearrangement product (5). The g.c.-m.s. analysis also offered additional proof (fragment peak: $225\left(M^{+}-\mathrm{CO}_{2} \mathrm{Et}\right), 123$ [$\left.225-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right]$ for the assigned structure (5). Decarboxylation ${ }^{4}$ of (5) with $\mathrm{NaCl}-$
$\mathrm{Me}_{2} \mathrm{SO}-\mathrm{H}_{2} \mathrm{O} / 150{ }^{\circ} \mathrm{C}$ afforded (6) (66\%), the structure of which was supported by spectroscopic data g.c.-m.s., $270 \mathrm{MHz}{ }^{1} \mathrm{H}$ n.m.r., ${ }^{13} \mathrm{C}$ n.m.r., and long range $2 \mathrm{D}{ }^{1} \mathrm{H}^{-13} \mathrm{C}$ COSY spectrum). \dagger

This unprecedented rearrangement was also observed in the cyclopentanone systems (7) and (8) which on treatment with $\mathrm{Bu}^{\mathrm{t} O K}$ in $\mathrm{Me}_{2} \mathrm{SO}$ afforded (9) (57\%) and (10) (47\%) respectively. These were converted into the corresponding decarboxylated compounds (11) and (12) \ddagger (Scheme 2). With the sixand seven-membered ring systems (13) and (14), the rearrangement failed to take place, only retro-Michael cleavage

[^0]

(:) $R^{1}=R^{2}=H$
i

t, $R^{2}=$

iv $\begin{array}{r}\square \\ \longrightarrow \text { (5:) } R^{1}=\mathrm{RO}_{2} \mathrm{Et}, \quad \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et} \\ \text { (6) } \\ \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\end{array}$

Scheme 1. Reagents and conditions: i, EtOCOCN-lithium di-isopropylamine (LDA) $/ \mathrm{THF},-78^{\circ} \mathrm{C}, 70 \%$; ii, $\mathrm{Bu}^{\mathrm{t}} \mathrm{OK} / \mathrm{Bu}^{\mathrm{t}} \mathrm{OH}$, ethyl acrylate, $25^{\circ} \mathrm{C}, 65 \%$; iii, $\mathrm{Bu}^{\mathrm{t} O K} / \mathrm{Me}_{2} \mathrm{SO}, 25^{\circ} \mathrm{C}, 22 \%$; iv, $\mathrm{NaCl}-\mathrm{Me}_{2} \mathrm{SO}-\mathrm{H}_{2} \mathrm{O}$, $150{ }^{\circ} \mathrm{C}, 66 \%$.

(7) $\mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Et}, \quad \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{R}^{3}=\mathrm{H}$
(8) $\mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Et}, \quad \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}, \mathrm{R}^{3}=\mathrm{H}$
(9) $\mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Et}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$
(10) $R^{1}=\mathrm{CO}_{2} E t, \quad R^{2}=\mathrm{H}, \quad R^{3}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN} \longleftarrow$
(11) $R^{1}=R^{2}=H$,
(12) $R^{1}=R^{2}=H$
$\mathrm{R}^{3}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$
$\mathrm{R}^{3}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$
Scheme 2. Reagents and conditions: i, $\mathrm{Bu}^{1} \mathrm{OK} / \mathrm{Me}_{2} \mathrm{SO}, 25^{\circ} \mathrm{C}$, (9) (57\%), (10) (63%); ii, $\mathrm{NaCl}-\mathrm{Me}_{2} \mathrm{SO}-\mathrm{H}_{2} \mathrm{O}, 150^{\circ} \mathrm{C}$: (11) 46% and (12) 76%.
products (15) and (16) being isolated (Scheme 3). This finding suggests that the reaction may involve an intramolecular rearrangement. We believe that the quasi-axial bond of the side chain in the five-membered ring (7) plays an important role in suppressing the retro-Michael reaction.* In addition, this bond can adopt an appropriate trajectory ${ }^{5}$ for a reverse [3.3] sigmatropic rearrangement ${ }^{6}$ to the proximal carbonyl to

[^1]
(11)

Figure.

(13) $n=6, \mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Et}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}(\mathrm{CN})$
(15) $n=6, \mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Et}, \mathrm{R}^{2}=\mathrm{H}$
(14) $n=7, \mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}(\mathrm{CN})$
(16) $n=7, \mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}$

Scheme 3.

(B)

Scheme 4.
generate the intermediate (B). Thus, subsequent rearrangement ${ }^{7}$ as shown in Scheme 4 may afford (9).

Experimental

1β-Ethoxycarbonylethyl-3-ethoxycarbonyl-5 $\beta \mathrm{H}$-bicyclo-[3.3.0]octan-2-one (5).-Compound (3) ($180 \mathrm{mg}, 0.61 \mathrm{mmol}$) in $\mathrm{Me}_{2} \mathrm{SO}(1.5 \mathrm{ml})$ was added dropwise with stirring to $\mathrm{Bu}^{\mathrm{t}} \mathrm{OK}$ $(82 \mathrm{mg}, 0.73 \mathrm{mmol})$ in dry $\mathrm{Me}_{2} \mathrm{SO}(2 \mathrm{ml})$ at $20^{\circ} \mathrm{C}$. Stirring was continued for 40 min at $20^{\circ} \mathrm{C}$ after which the reaction was quenched by acetic acid $(0.25 \mathrm{ml})$. The reaction mixture was diluted with brine and extracted with AcOEt. The AcOEt extract was washed with 5% aqueous NaHCO_{3} and brine, dried, and evaporated under reduced pressure to leave an oil, which was purified by flash column chromatography on silica gel. The fraction eluted with 5% AcOEt in hexane (v / v) afforded (2) (24 $\mathrm{mg}, 20 \%),(5)(40 \mathrm{mg}, 22 \%)$ as a colourless oil, and recovered (3) ($22 \mathrm{mg}, 12 \%$). For (5): $v_{\text {max }}$ (neat) 3400,1730 , and $1680 \mathrm{~cm}^{-1}$; $\delta\left(\mathrm{CDCl}_{3}\right) 4.21,4.20(3: 2)(2 \mathrm{H}, \mathrm{q}, J 7.1 \mathrm{~Hz}), 4.11(2 \mathrm{H}, \mathrm{q}, J 7.1$ Hz), 3.37 ($3 \mathrm{H}, \mathrm{t}, J 8.6 \mathrm{~Hz}$), 2.80-1.61 ($13 \mathrm{H}, \mathrm{m}$), 1.30, 1.26 (3:2) $(3 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{~Hz})$, and $1.24(3 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{~Hz}) ; 296\left(M^{+}\right), 250,196$, 179 , and 122.

References

1 M. Susse, J. Hajicek, and M. Hesse, Helv. Chim. Acta, 1985, 68, 1986; P. Dowd and S.-C. Choi, J. Am. Chem. Soc., 1987, 109, 6548; T. Sugawara and I. Kuwajima, Tetrahedron Lett., 1985, 26, 5571.
2 Z.-F. Xie, H. Suemune, and K. Sakai, J. Chem. Soc., Chem. Commun., 1988, 612; Z.-F. Xie, H. Suemune, and K. Sakai, ibid., 1988, 1638.
3 N. Jones and H. T. Taylor, J. Chem. Soc., Chem. Commun., 1959, 4017. 4 A. P. Krapcho, Synthesis, 1982, 805.
5 J. E. Baldwin, J. Chem. Soc., Chem. Commun., 1976, 734.
6 For retro-Claisen rearrangements, see M. T. Hughes and R. O.

Williams, J. Chem. Soc., Chem. Commun., 1968, 587; A. D. Baxter, S. M. Roberts, F. Scheinmann, B. J. Wakefield, and R. D. Cockroft, J. Am. Chem. Soc., 1969, 91, 2815; E. J. Corey and J. E. Munroe, ibid., 1982, 104, 6129.
7 For recent reviews on [3.3] sigmatropic rearrangements, see F. E. Ziegler, Acc. Chem. Res., 1988, 88, 1423; M. J. S. Dewar and C. Jie, J. Am. Chem. Soc., 1989, 111, 511.

Received 15th March 1989
(Accepted 18th July 1989); Paper 9/03035B

[^0]: \dagger All compounds gave satisfactory spectroscopic data. For selected data: (6); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.24(\mathrm{t}, J 7.1 \mathrm{~Hz}, 3-\mathrm{H}), 1.45-2.50(\mathrm{~m}, 15 \mathrm{H}), 4.11(\mathrm{q}$, $J 7.1 \mathrm{~Hz}, 2-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 14.2(\mathrm{q}), 24.9(\mathrm{t}), 25.3(\mathrm{t}), 30.3(\mathrm{t}), 31.0(\mathrm{t}), 33.4$ (t), 35.9 (t), $37.5(\mathrm{t}), 46.3$ (d), $59.3(\mathrm{~s}), 60.3(\mathrm{t}), 173.4(\mathrm{~s})$, and $224.5(\mathrm{~s})$; $v_{\max .}$ (neat) 2950 and $1730 \mathrm{~cm}^{-1} ; m / z$ (e.i.-m.s.) $224\left(M^{+}\right), 196,179$, and 123 (Found: $M^{+}, 224.1407$. Calc. for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3}$: 224.2992).
 \ddagger Chemical and spectroscopic characteristics are in full agreement with that of the authentic samples prepared by alkylation of pyrrolidin-1ylcyclopentene with ethyl acrylate and acrylonitrile, respectively, see G. Stork, A. Brizzolara, H. Landesman, J. Szmuszhovicz, and R. Terrell, J. Am. Chem. Soc., 1963, 85, 207.

[^1]: * It seems to be reasonable to assume that methoxycarbonylethyl (or cyanoethyl) function in six- and seven-membered rings occupies the axial configuration, and the overlap between the carbonyl π-orbital and the σ^{*}-orbital of $C_{a}-C_{b}$ should then facilitate cleavage of the $C_{a}-C_{b}$ bond (see Figure).

